Overcoming CRISPR's side effects for therapeutic applications

· News-Medical

CRISPR is a revolutionary tool that allows scientists to precisely modify the genome and gene expression of cells in any organism. It's a reagent-;a substance that facilitates a reaction-;that combines an enzyme with a programmable RNA capable of locating specific genetic sequences. Once guided to the correct spot, the enzyme acts like a pair of scissors, cutting, replacing, or deleting sequences of DNA.

Researchers are now using the technology to, among many things, treat genetic diseases, develop medical therapeutics, and design diagnostic tools.

"CRISPR is very powerful, but it comes with side effects," says Lehigh University bioengineering researcher Tomas Gonzalez-Fernandez, an assistant professor in the P.C. Rossin College of Engineering and Applied Science. "By modifying one gene, we can switch on or switch off many different genes that are associated with that gene, leading to unexpected results."

The model will allow the team to simulate the effects of altering a single gene on the entire genome, enabling them to predict and avoid unintended consequences. It will also help in both the assessment and identification of novel genetic targets.

Their approach has broad implications for various fields, including cancer treatment and musculoskeletal applications. For instance, the team has identified gene candidates that can enhance the differentiation of induced pluripotent stem cells into cells that are more effective at fighting cancer. (Induced pluripotent stem cells, or iPSCs, are capable of differentiating into any cell type in the body.) Similarly, they've found genes in mesenchymal stromal cells-;stem cells that can differentiate into bone, cartilage, muscle, and fat cells-;that can improve their differentiation into cartilage, which can enhance the treatment of conditions like osteoarthritis.

In order to function, however, CRISPR must penetrate a cell's nucleus. And so the second part of the NSF grant focuses on the side effects of how that machinery-;the enzyme and the RNA-;is delivered to cells via nanoparticle-based vehicles.

"Thanks to these nanoparticles, the CRISPR machinery can enter the nucleus where it will do its magic," he says. "But we have seen that the nanoparticle itself can negatively affect the cells. So we'll use different computer modeling techniques to predict how these mechanisms affect the capacity of the stem cells to differentiate and survive."

"How can we combine everything from computer science to modeling to genetic engineering and molecular biology to address a really significant problem of CRISPR?" he says. "It's technically very challenging to address, but the potential is vast. This technique we're developing could open up a range of treatment and therapeutic applications that could target a wide variety of diseases."

Source:

Lehigh University