Researchers aim to transform treatment for sleep disorders in military personnel

· News-Medical

Sleep problems are among the top health concerns of military personnel, with an estimated 85% meeting criteria for a clinically relevant sleep disorder and as many as 25% identifying insomnia as a primary issue. The impact of sleeplessness on force readiness is profound, creating a critical need for developing innovative, effective, nondrug interventions.

For the past decade, William "Scott" Killgore, PhD, an Army veteran, has focused much of his work around factors affecting the mental health, well-being and performance of military personnel.

Brain imaging has shown that internally focused thoughts tend to activate the default mode network, or DMN, a core system in the brain that processes internal thoughts and emotions and becomes active during rest or introspective activities. Killgore and his team recently completed a preliminary study to suppress the DMN before sleep using a handheld device that stimulates brain cells with magnetic fields.

William "Scott" Killgore, PhDMany people with insomnia describe being unable to 'turn off' their thoughts when trying to fall asleep. This internal dialog, worry and rumination is facilitated by activation within the DMN, perpetuating a cycle of restlessness. Our study's initial findings suggest that by disrupting this brain network through a brief, 40-second stimulation, we can effectively help individuals achieve better sleep."

Participants showed improvements in sleep after one session of continuous theta burst stimulation to a single region of the DMN.

Bolstered by these preliminary findings and the new grant, the research team is launching an expanded, three-year study to examine the long-term effects of 10 repeated administrations of continuous theta burst stimulation over a two-week period.

They will recruit 120 participants with chronic insomnia and assess sleep improvements over several months. Participants will receive brief brain-stimulation sessions, and their sleep will be monitored using state-of-the-art sleep trackers and portable at-home brain wave monitors.

"By investigating how different areas of the brain respond to continuous theta burst stimulation, we hope to fine-tune this approach for maximum effectiveness," Killgore said. "Our aim is to see whether we can improve sleep in the short term and if these improvements can be sustained following treatment."

The research team includes two active-duty military consultants with sleep disorders. Their insights and feedback have shaped the study's design, and they will provide guidance on how to translate the results into meaningful changes for the military community.

Sleep problems are among the top health concerns of military personnel, with an estimated 85% meeting criteria for a clinically relevant sleep disorder and as many as 25% identifying insomnia as a primary issue. The impact of sleeplessness on force readiness is profound, creating a critical need for developing innovative, effective, nondrug interventions.

Brain imaging has shown that internally focused thoughts tend to activate the default mode network, or DMN, a core system in the brain that processes internal thoughts and emotions and becomes active during rest or introspective activities. Killgore and his team recently completed a preliminary study to suppress the DMN before sleep using a handheld device that stimulates brain cells with magnetic fields.

"Many people with insomnia describe being unable to 'turn off' their thoughts when trying to fall asleep," Killgore said. "This internal dialog, worry and rumination is facilitated by activation within the DMN, perpetuating a cycle of restlessness. Our study's initial findings suggest that by disrupting this brain network through a brief, 40-second stimulation, we can effectively help individuals achieve better sleep."

Participants showed improvements in sleep after one session of continuous theta burst stimulation to a single region of the DMN.

Bolstered by these preliminary findings and the new grant, the research team is launching an expanded, three-year study to examine the long-term effects of 10 repeated administrations of continuous theta burst stimulation over a two-week period.

They will recruit 120 participants with chronic insomnia and assess sleep improvements over several months. Participants will receive brief brain-stimulation sessions, and their sleep will be monitored using state-of-the-art sleep trackers and portable at-home brain wave monitors.

"By investigating how different areas of the brain respond to continuous theta burst stimulation, we hope to fine-tune this approach for maximum effectiveness," Killgore said. "Our aim is to see whether we can improve sleep in the short term and if these improvements can be sustained following treatment."

The research team includes two active-duty military consultants with sleep disorders. Their insights and feedback have shaped the study's design, and they will provide guidance on how to translate the results into meaningful changes for the military community.

Source:

University of Arizona Health Sciences